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[1] We estimate seasonal variations in methane (CH4) emissions from central California
from December 2007 through November 2008 by comparing CH4 mixing ratios
measured at a tall tower with transport model predictions based on a global 1� a priori
CH4 emissions map (EDGAR32) and a 10 km seasonally varying California-specific
map, calibrated to statewide by CH4 emission totals. Atmospheric particle trajectories
and surface footprints are computed using the Weather Research and Forecasting and
Stochastic Time-Inverted Lagrangian Transport models. Uncertainties due to wind
velocity and boundary layer mixing depth are evaluated using measurements from radar
wind profilers. CH4 signals calculated using the EDGAR32 emission model are larger
than those based on the California-specific model and in better agreement with
measurements. However, Bayesian inverse analyses using the California-specific and
EDGAR32 maps yield comparable annually averaged posterior CH4 emissions totaling
1.55 � 0.24 times and 1.84 � 0.27 times larger than the California-specific prior
emissions, respectively, for a region of central California within approximately 150 km
of the tower. If these results are applicable across California, state total CH4 emissions
would account for approximately 9% of state total greenhouse gas emissions. Spatial
resolution of emissions within the region near the tower reveal seasonality expected
from several biogenic sources, but correlations in the posterior errors on emissions from
both prior models indicate that the tower footprints do not resolve spatial structure of
emissions. This suggests that including additional towers in a measurement network will
improve the regional specificity of the posterior estimates.
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1. Introduction

[2] Methane (CH4) is an important greenhouse gas
(GHG), playing a significant role in the climate system,
with a global warming potential (GWP) relative to CO2

estimated at 21 (g CO2eq/g CH4) over a 100 year period
[Intergovernmental Panel on Climate Change, 1995].
Earth’s CH4 has increased by about 150% since 1750 in con-
centration, and accounts for �25% of the total radiative forc-
ing from all long-lived and globally mixed GHGs [Hofmann
et al., 2006; Montzka et al., 2011]. Correspondingly,

attention has focused on inverse model assessment of global
[e.g., Gimson and Uliasz, 2003; Houweling et al., 1999;
Miller et al., 2008], and regional [e.g., Kort et al., 2008;
Zhao et al., 2009] CH4 sources.
[3] At the regional scale, California currently emits

approximately 500 Tg of CO2 equivalent GHGs, with CH4

currently estimated to contribute approximately 6% of the
annual total (California Air Resources Board (ARB), Cali-
fornia greenhouse gas emission inventory, 2010, http://www.
arb.ca.gov/cc/inventory/inventory.htm). Because California
has committed to an ambitious plan to reduce emissions to
1990 levels by 2020 through Assembly Bill 32 (AB-32),
verifying the success of control strategies will require
accounting for CH4 emissions.
[4] Emission inventories and ecosystem models provide

valuable estimates of the spatiotemporal distributions of CH4

emissions from a variety of sources [Christensen et al.,
1996; Potter, 1997; Huang et al., 1998; Matthews et al.,
2000; Zhang et al., 2002; Tian et al., 2010; California
ARB, online report, 2010]. However, it is difficult to eval-
uate the inventory model performance at regional scales,
largely due to the lack of continuous measurements covering
large areas over long periods. Long-term measurements are
important because of the strong seasonal dependences of
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CH4 emissions from natural wetlands [Cicerone et al.,
1983; Wilson et al., 1989; Cao et al., 1998], agriculture
[Salas et al., 2006; McMillan et al., 2007], and other likely
sources. Aircraft measurements provide valuable data for
estimating surface CH4 emissions over short time periods but
the high flight expense generally limits long-term monitoring
[Matsueda and Inoue, 1999; Wratt et al., 2001; Levin et al.,
2002; Gimson and Uliasz, 2003; Kort et al., 2008]. Flux
towers provide long-term direct measurements of surface
CH4 emissions, but only over approximately kilometer-scale
areas [Mosier et al., 1991; Hansen et al., 1993; Ball et al.,
1999; Alm et al., 1999]. Mixing ratio measurements from
either towers or space-borne remote sensing can provide
continuous long-term measurements, representing larger
spatial scales but require inverse techniques to infer emis-
sions [Simpson et al., 1997; Hein et al., 1997; Houweling
et al., 1999; Werner et al., 2003; Manning et al., 2003;
Bergamaschi et al., 2005; Zhao et al., 2009; Popa et al.,
2010].
[5] To date, the seasonal variation in CH4 emissions from

different regions of California has not been quantitatively
evaluated. This paper quantifies regional CH4 emissions
from central California over the course of a year period,
representing one of the first analyses of seasonal variation in
CH4 emissions from this mixed urban and rural area. The
work expands on an initial study by Zhao et al. [2009] that
quantified CH4 emissions from central California for a 3
month period from October to December 2007. In section 2

we describe the methods we employed, including atmo-
spheric measurements, a priori CH4 emissions inventories,
mesoscale meteorology and trajectory transport modeling,
and the Bayesian inverse method, focusing on the mod-
ifications from Zhao et al. [2009]. Section 3 describes
results, including the seasonal variations in calculated foot-
prints, and the inferred surface emissions of CH4 from cen-
tral California for different regions based on simple
correlation analysis and the Bayesian analysis of regional
emissions. Section 4 summarizes the results and discusses
the implications for CH4 inverse modeling at the regional
scale, highlighting the importance of uncertainty in the
spatial distribution of a priori emissions and the value of
multiple measurement stations.

2. Data and Models

[6] Following Zhao et al. [2009], the Bayesian inversion
technique employed in this paper obtains posterior CH4

emission estimates by scaling spatially distributed a priori
emissions to minimize the difference between tower-based
CH4 mixing ratios and model predictions. Correspondingly,
the data sets used in the inversion technique include tower
measurements of CH4 mixing ratios, a priori CH4 emission
maps, trajectories used for CH4 predictions, modeled mete-
orology used to drive the transport model and the estimated
boundary condition at the edge of the modeling domain.

Figure 1. Diurnal cycles of mean hourly (PST) measured CH4 mixing ratio obtained for 91 and 483 m
sampling heights on the WGC tower for the period from December 2007 to November 2008.
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2.1. Measurements

[7] CH4 measurements were made at 91 and 483 m above
ground level on a tall tower near Walnut Grove, California
(WGC, 121.49�W, 38.27�N, 0 m above sea level), beginning
in September 2007. The CH4 mixing ratios at each height are
measured every 15 min and averaged into the 3 h means
used in this study. Detailed information about the instrument
design is described by Zhao et al. [2009] and will not be
repeated here. The measurement accuracy, determined by
comparison with time synchronized flask sampling and
laboratory analysis at NOAA, is �1 ppbv CH4 during peri-
ods when variations in the continuous CH4 measurements
are small enough to allow clear comparison with the rela-
tively rapid (�1 min) flask sampling. This accuracy is both
significantly smaller than the measured variations in CH4 at
the tower site and likely insignificant compared to the
uncertainties in model predictions of CH4 mixing ratio
described below.
[8] A subset of the measured data was selected for the

inverse analysis based upon a “well-mixed” requirement
limiting the vertical gradient in CH4 mixing ratio. As shown
in Figure 1, the seasonal mean diurnal cycles of CH4 mixing
ratio for air sampled from the 91 and 483 m levels are typi-
cally most similar from afternoon to late evening, with dif-
ferences of �50 ppb in winter and�10 ppb in summer. Data
were then selected such that the CH4 mixing ratio difference
between 91 and 483 m fell within the range �1 sd < (C91 �
C483) < 3 sd, where sd is the standard deviation of the dif-
ference of the mean cycle between beginning of afternoon
and late evening (1200 and 2300 local time). Based on this
criteria, between 60 and 90% of the data from the afternoon

to late evening time window were retained for the inverse
analysis in summer and winter, respectively. For example,
the December 2007 to November 2008 data are shown in
Figure 2 (top), in which the blue circles indicate the data
satisfying well-mixed criteria in this study.
[9] In addition to requiring well-mixed conditions, the data

were screened to remove periods with obvious contamination
from wild fires that were not included in our emission maps
(e.g., forest fires). The summer of 2008 included a period
with significant fire activity based on the report from the
California Department of Forestry and Fire Protection
(CDFFP) [Office of Emergency Services, 2008]. To identify
the summer 2008 period with potential CH4 sources due to
the fires (that are not present in our inventory), we used CO
measurements from an instrument similar to that described in
Potosnak et al. [1999] in the NOAA tall tower network
(http://www.esrl.noaa.gov/gmd/ccgg/towers/). Based on the
CO measurements for the period from December 2007 to
November 2008, which are shown in Figure 2 (bottom), we
identified and excluded the significant fire events that
affected Northern and central California from 20 June to 28
July 2008. Because the CO screening is not perfect, we note
that lower levels of CH4 emissions from agricultural and
heating related biomass combustion could be present in our
posterior emission estimates.
[10] We estimate uncertainties in modeled atmospheric

transport using measured planetary boundary layer (PBL)
heights retrieved from radar wind profilers located near
Sacramento (SAC; 121.42�W, 38.30�N), Chowchilla (CCL;
120.24�W, 37.11�N), Chico (CCO; 121.91�W, 39.70�N),
and Livermore (LVR; 121.90�W, 37.71�N). Boundary layer
depths were estimated using methods described previously
[Bianco and Wilczak, 2002; Bianco et al., 2008; Bianco
et al., 2011] which can estimate daytime PBL heights from
about 150 m to 4000 m with an RMS error of �200 m
[Dye et al., 1995].

2.2. Prior CH4 Emission Map

[11] WGC is located in a region containing natural gas
fields and wetlands to the West, rice agriculture and natural
gas fields to the North, livestock agriculture to the South,
and landfills in the regional landscape. To account for this
complexity in the landscape of central California, we have
improved mapping of the spatial distribution of CH4 emis-
sions. The new maps update the emission maps from Zhao
et al. [2009] to more accurately capture the spatial infor-
mation available to map CH4 emissions, scaled to the 2008
statewide sums contained in the California ARB CH4 emis-
sion inventory by emissions sector (California ARB, online
report, 2010). Relevant to the following work, readers should
note that the subregion classification for emission estimates
described in Zhao et al. [2009] is shown in Figure 3a. In this
section, major improvements for a priori emissions over
Zhao et al. [2009] are described. First, the spatial distribution
of CH4 emissions from dairy livestock (LS) are improved
by using a map of dairy livestock density supplied by the
California Department of Water Resources scaled to annual
CH4 emissions assuming a constant emission factor of
0.39 kg C/cow/d from the recent work of Salas et al.
[2009], resulting in total CH4 emissions from livestock
that are 1.8 times the total livestock emission estimate
from Zhao et al. [2009] (Figure 3b).

Figure 2. Tower measurements of (top) CH4 and (bottom)
CO at 91 m (black) and 483 m (red) as functions of date
(expressed as day/month) for the period between December
2007 and November 2008. The blue circles indicate the data
satisfying the well-mixed criteria in this study. The vertical
bars indicate the fire period from 20 June to 28 July 2008,
which was excluded from further analysis.

JEONG ET AL.: SEASONAL VARIATION OF CH4 EMISSIONS D11306D11306

3 of 15



Figure 3. Maps showing (a) region classifications as well as a priori CH4 emissions from (b) livestock,
(c) natural gas wells, (d) natural gas based on California population density, (e) the total California-
specific emission model, and (f) the EDGAR32 emission model. The location of the tower is marked with
a cross near longitude 121�W, latitude 38�N. The triangle in Figure 3c represents the location of the Rio
Vista Gas (RVG), which is one of the largest gas fields in California.
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[12] Second, we identified natural gas wells in California
using information from California Department of Conserva-
tion (CDC, http://www.consrv.ca.gov/dog/Pages/statistics.
aspx) to generate a new emission map from gas wells, which
were not accounted for in Zhao et al. [2009]. CH4 emissions
from gas wells are estimated using gas production informa-
tion from California Department of Conservation [2009].
Harrison et al. [1997] estimated CH4 emissions equivalent to
1.4 � 0.5% of gross natural gas production for the 1992
baseline year for the entire gas production processes from
field production to distribution. Since the available data for
this study do not provide detailed information of gas pro-
duction processes for individual gas fields or wells, we
assumed a leakage rate of 1% related to gas production and
transmission/storage processes in the gas fields. CDC Dis-
tricts 5 and 6 are within the footprint region of WGC. How-
ever, the gas production of District 5 is only 5% of that of
District 6. Thus, we focus on natural gas emissions from
District 6 where most wells produce natural gas only, and
total gas production (for 2008) was 2.31� 109 m3. Figure 3c
shows the resulting CH4 emission map from natural gas
wells. The remaining Districts (1–4) in the southern San
Joaquin Valley and other locations in Southern California are
primarily operated to produce liquid petroleum, but also
produce a significant amount of “associated” natural gas.
Because the fractional CH4 leakage rate from the petroleum
facilities are likely different from that for the natural gas
fields and because the WGC footprints have weak sensitivity
to Districts 1–4, CH4 emissions from Districts 1–4 are esti-
mated from California mandatory reports on oil and gas. The
remainder of natural gas emissions was apportioned by
population density in California using 4 km population maps
available from the Socioeconomic Data and Applications
Center (Center for International Earth Science Information
Network (CIESIN) and Centro Internacional de Agricultura
Tropical (CIAT), Gridded population of the world, version 3,
population density grid, 2005, http://sedac.ciesin.columbia.
edu/gpw) so that the statewide total estimate from natural gas
matched the California ARB inventory. Total natural gas
emissions based on California population density are shown
in Figure 3d.
[13] Third, we used seasonally varying CH4 emissions for

agricultural CH4 sources. Monthly averaged CH4 emission
maps for county level agricultural CH4 fluxes were taken
from the denitrification and decomposition model (DNDC)
output (assuming the 1983, high irrigation case) described
by Salas et al. [2006]. Wetland CH4 emissions were taken
from monthly averages of the Carnegie-Ames-Stanford
Approach CH4 (CASA-CH4) model from Potter et al.
[2006]. The resulting maps capture the strong seasonality
in these emission sources near the WGC tower. Rice

agriculture is concentrated in Region 6 while other regions
have negligible emissions from it. Rice agriculture accounts
for 46% of the total CH4 emissions in Region 6 in annual
average, with estimated emissions of 0.33, 3.63, 1.08 and
0 Tg CO2eq yr�1 for spring, summer, fall and winter,
respectively. Similarly, wetland emissions also show a sea-
sonal variation with summer having the maximum, but rep-
resent only 6.7, 2.5, 5.2% of the total CH4 emissions for
Regions 6, 7 and 8, respectively.
[14] Figure 3e shows total California-specific CH4 surface

emissions with a high resolution (�10 km), and the EDGAR
32FT2000 (EDGAR32 hereafter) CH4 emission map (�100
km) [Olivier et al., 2005] is shown in Figure 3f. Seasonal
CH4 emissions for the three regions (6, 7 and 8) near the
WGC tower are summarized and compared with the
EDGAR32 emissions in Table 1. It is worth noting that the
EDGAR32 maps especially give large weight to the San
Francisco Bay urban area (Region 7), while the California-
specific map gives more weight to the Central Valley
(Regions 6 and 8).

2.3. Trajectory and Meteorology

[15] Predicted contributions to CH4 mixing ratios from
emissions within the modeling domain are calculated as Fe,
where F is footprint strength, and e is the a priori CH4

emissions. Footprints are calculated from particle trajectories
simulated using the Stochastic Time-Inverted Lagrangian
Transport (STILT) model [Lin et al., 2003, 2004]. In this
study, 500 particles are released hourly (from UTC hour 00)
at the WGC tower (91 m) and transported backward in time
7 days to insure a majority of the particles reach positions
representative of the marine boundary layer. The meteorol-
ogy used to drive this transport model is from the simulation
of Weather Research and Forecasting (WRF2.2) model
[Skamarock et al., 2005]. WRF2.2 has been slightly modi-
fied to be coupled with STILT (WRF-STILT) by Nehrkorn
et al. [2010].
[16] The WRF model simulations follow those described

in Zhao et al. [2009] with the following two modifications.
First, the PBL scheme was changed from the Yonsei Uni-
versity (YSU) scheme to the Mellor-Yamada-Janjic (MYJ)
TKE scheme [Mellor and Yamada, 1982; Janjić, 1990].
Second, we nested subdomains using spatial resolutions of
36, 12, and 4 km (shown in Figure 4) at a ratio of 1/3 (rather
than 1/5 used in Zhao et al. [2009]) to reduce discontinuities,
and employed 50 vertical layers between surface and 100 mb
to better resolve the planetary boundary layer. Subdomains
were computed with one-way nesting from the next outer
subregion. Each day was simulated separately using 30 h run
(including 6 h from the previous day for spin-up) with
hourly output. And the forecast fields were nudged to the

Table 1. A Priori Emissions from the California-Specific and EDGAR32 Models for the Three Regions Near the WGC Towera

Regions

California-Specific Seasonal

California-Specific Annual EDGAR32Winter Spring Summer Fall

R06 1.35 1.70 5.13 2.59 2.69 3.59
R07 1.27 1.27 1.30 1.29 1.28 8.21
R08 5.02 5.01 5.33 5.25 5.15 3.10
Total 7.64 7.98 11.76 9.13 9.13 14.90

aA priori emissions, Tg CO2eq yr�1 assuming a global warming potential of 21 g CO2eq/g CH4.
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gridded North American Regional Reanalysis (NARR)
[Mesinger et al., 2006] fields (32 km resolution) every 3 h.

2.4. Bayesian Inverse Model

2.4.1. Inversion Approach
[17] We apply a scaling factor Bayesian inversion (SFBI)

method to estimate seasonal variations in CH4 emissions
from central California using measured CH4 mixing ratios at
a tall tower. As described in Gerbig et al. [2003], Lin et al.
[2003] and Zhao et al. [2009], the local CH4 mixing ratio
at the receptor c can be modeled as

c ¼ Kl þ v ð1Þ
whereK = Fe, l is a state vector for scaling factors, which is
used to adjust emissions from sources or regions, and v is a
vector representing the model-data mismatch with a covari-
ance matrix R. We model R as a diagonal matrix to represent
the total variance associated with all error sources such as
the measurement error and the transport error. Following the
Gaussian assumptions, the posterior estimate for l is

lpost ¼ KTR�1K þQ�1
l

� ��1
KTR�1cþQ�1

l lprior

� � ð2Þ

where lprior is the a priori estimate for l, and Ql is the error
covariance associated with lprior. Uncertainty associated

with total anthropogenic CH4 emissions in the U.S. ranges
from 10% to 50%, and emission uncertainty for rice agri-
culture is greater than 50% [Committee on Methods for
Estimating Greenhouse Gas Emissions, 2010]. Committee
on Methods for Estimating Greenhouse Gas Emissions
[2010] also reported that emission estimate uncertainties
for manure management and fugitive emissions from fuels
are highly variable (less than 10%–100%). Because the
central California region includes such uncertain CH4

emission sources as rice agriculture, livestock and natural
gas fields, we use 50% uncertainty in our a priori emission
models for the baseline analysis. The posterior error
covariance for l is given by

Vpost ¼ KTR�1K þQ�1
l

� ��1 ð3Þ

To determine optimal emissions, we use the SFBI method at
a monthly temporal scale based on the two CH4 a priori
emission models described in section 2.2. In this paper,
however, most of the results are summarized seasonally. We
combine May with April and July with June because the
number of observations for May and July is much smaller
than the other months due to missing data and removal of
data from wild fire periods. The inverse modeling approach
is applied in two phases as in Bergamaschi et al. [2005]. A

Figure 4. WRF initial boundary set up with three-level nested domains. The ratio of spatial resolution
between the three levels is 3. The resolutions for d01, d02, d03, and d04 are 36, 12, 4, and 4 km,
respectively.
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first inversion is conducted based on the data selected using
the well-mixed condition criteria described in section 2.1.
The second (final) inversion uses data points that are
accepted by applying the selection criteria |ci � (Kl)i|2 <
aRi, where a is a fixed value for each month. As in the first
inversion, the final inversion is performed using the original a
priori emission maps, and therefore the first inversion is used
as a data selection tool for the atmospheric observations. This
phased approach removes outliers that might otherwise
induce biases in the inversion. Bergamaschi et al. [2005]
accepted data for a = 2, though they found that relaxing a
to 3 had a very small effect on the posterior l. In this study,
we choose the value of a for each month via an iterative
process such that the chi-square values from the final inver-
sion are close to unity [Tarantola, 1987]. A sensitivity
analysis for a is described in section 3.4.
2.4.2. Error Covariance Analysis
[18] Following Gerbig et al. [2003], Zhao et al. [2009],

and Göckede et al. [2010], the diagonal elements of the
model-data mismatch matrix R are estimated from the linear
sum of contributing uncertainties in the footprints (e.g.,
number of particles released, flux aggregation at finite res-
olution, uncertainties in modeled transport winds and PBL),
the estimated CH4 background, and the a priori emissions.
Here,

Ri ¼ Spart þ Saggr þ Sbkgd þ STransPBL þ STransWIND; ð4Þ

where errors are calculated by comparing the root-mean-
square (RMS) differences in simulated CH4 signals. For the
particle number error (Spart, �5% of background-subtracted

mean signal) the comparison is made between test runs
releasing 1000 particles and the bulk runs calculated with the
release of 500 particles. The aggregation error (Saggr, �11%)
is obtained from the comparison made between runs using
full (0.1� pixel) fluxes and fluxes aggregated to county level.
[19] For the marine background error (Sbkgd) the compar-

ison is made between the minimum nighttime CH4 measured
at 483 m (presuming near free troposphere values) and
values propagated to the tower from a model of Pacific
ocean CH4 mixing ratios. Following Zhao et al. [2009], we
estimated the background CH4 mixing ratio using the final
latitude of each particle as a lookup into the latitudinally
averaged marine boundary layer (MBL) CH4 (NOAA Glo-
balview CH4 product, http://www.esrl.noaa.gov/gmd/ccgg/
globalview/index.html). Only time points for which more
than 80% of the particles reached longitudes 1.5� from the
coast were included in the study. To account for seasonal
variations in background errors, the RMS difference
between the MBL background and the 483 CH4 measure-
ments was calculated for each season. The RMS difference
values were 20.3, 14.7, 16.4 and 24.7 ppb for spring, sum-
mer, fall, and winter, respectively. These values are signifi-
cantly higher than the value of 11.7 ppb obtained previously
in Zhao et al. [2009] although the months and years are
different.
[20] As described in Zhao et al. [2009], errors due to

uncertainties in atmospheric transport are significant. To
estimate the uncertainty in predicted CH4 signals due to
errors from modeled PBL heights (STransPBL) and winds
(STransWIND), we evaluated model errors in winds and PBL
heights and then calculated the RMS difference in CH4

signals obtained from simulations with and without input of
an additional stochastic component of wind and PBL errors
in STILT.
[21] Extending beyond Zhao et al. [2009], we evaluated

PBL heights (Zi) at four stations. Figure 5 shows the loca-
tions of a nearby (within 8 km of WGC) profiler (SAC), and
three more distant profilers near Chowchilla (CCL), Chico
(CCO), and Livermore (LVR). Most relevant to the WGC
measurements, we compare Zi from WRF-STILT with
measurements from the SAC profiler for January 2008, April
2008, July 2008, and October 2007, the midpoint months of
the winter, spring, summer and fall measurement periods.
Assuming the uncertainties in modeled and measured Zi are
roughly equal, the geometric linear regressions of modeled
on measured Zi yield regression lines statistically consistent
with slopes of 1.00 � 0.25, 0.86 � 0.04, 1.01 � 0.08, and
0.97 � 0.11 for January, April, July, and October, respec-
tively. The estimated RMS errors were 415 m, 255 m,
159 m, and 289 m for January, April, July, and October,
respectively. Assuming the RMS scatter in predicted versus
measured Zi can be represented as the sum of squares of
measurement uncertainty (�200 m [Dye et al., 1995]) and
WRF-STILT model uncertainty, the RMS error in the
WRF-STILT model ranges from very small in summer to
near 300 m in winter.
[22] To account for the large seasonal variation in the

modeled Zi, we conducted an error analysis of Zi for January,
April, and July following the method in Zhao et al. [2009]
while we adopt the error of 24% for October from Zhao
et al. [2009]. We assumed that the midpoint month of
each season represents the total variability of the season.

Figure 5. Map of central California showing the location of
Walnut Grove Tower (WGC; red cross) and the locations of
the four radar wind profilers (black triangles) at Sacramento
(SAC), Chico (CCO), Chowchilla (CCL), and Livermore
(LVR), with predicted monthly mean PBL heights (m) for
June 2008, 10:00 PST, shown in color.
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For each season, we perturbed Zi by 10% and propagated
it through transport simulations. Then we computed CH4

signals (CCH4) based on the perturbation to estimate their
sensitivity to Zi (i.e., dCCH4/dZi) as a first-order
approximation. The dCCH4/dZi values for spring, summer
and winter were 0.03, 0.03, and 0.14 ppb m�1, respec-
tively. Due to the large RMS difference between the
measured and predicted Zi, winter showed the largest
sensitivity of CH4 signals to Zi in conjunction with the
high mean seasonal CH4. By applying the inferred RMS
error in the WRF-STILT model to dCCH4/dZi as in Zhao
et al. [2009], we estimated 6.7, 1.6, 12.3 and 32.0 ppb
for errors associated with Zi for spring, summer, fall and
winter, respectively.
[23] Unlike the model-measurement comparison at the

SAC site, PBL heights at some other profilers do show small
biases. In April 2008, for example, modeled PBL agrees
well with the measurements at CCO (slope = 1.03 � 0.08),
but is lower than the measurements at CCL (slope = 0.78 �
0.06) and LVR (slope = 0.77 � 0.05). To estimate the effect
of these biases, we calculated CH4 signals for WGC with
and without perturbing PBL depths at distant sites and found
the errors to be small compared to the measured signals
because of the relatively weak footprint strength at distant
locations.
[24] Uncertainty in modeled CH4 signals due to errors in

modeled winds is estimated using modeled and measured
winds for the 127 m height on the WGC tower in the months
of January, April, July, and October. RMS model-data
differences in U and V wind velocities range from about 2
to 3 m s�1, without significant biases. The RMS errors for
the U component were 2.41, 2.66, 3.03, and 2.88 m s�1 for
January, April, July, and October, respectively. For the V
component, the RMS errors were 3.11, 2.41, 2.06, and
2.46 m s�1 for the same months. The resulting RMS
error in modeled wind was estimated across seasons as
3.7 m s�1. Propagating a random wind component of the
velocity error through STILT yielded a typical signal
variation of �10% of the background-subtracted mean
CH4 signal.
[25] Finally, assuming all of the errors from equation (4)

are independent, the errors were combined in quadrature to
yield a total expected model-data mismatch error and are
shown in Table 2 along with the number of observations
used in the final inversion. Seasonally estimated model-data
mismatch errors are used for all the months belonging to the
given season. These errors were used to populate the diag-
onal elements of R in equations (2)–(4). The estimated errors
are larger than the estimated error (�32% of mean CH4

signal) in Zhao et al. [2009], largely due to the estimated
uncertainty in PBL depth and background mixing ratios,
though the seasons and years are different. This will have the

effect of reducing the influence that the measurements have
in perturbing the prior emission models.

3. Results

3.1. Footprints

[26] Figure 6 shows the average footprints during well-
mixed periods, for spring (March, April, May), summer
(June, July, August), fall (September, October, November),
and winter (December, January, February). There is a clear
seasonal pattern for the distribution of footprints. In summer,
the footprints are strongest from the San Francisco Bay area
to the west of the WGC tower (henceforth Bay-WGC) due to
the dominance of land-ocean winds; in the transition seasons
of spring and fall, footprints are stronger from the North
Central Valley due to a shift toward north–south winds; in
winter, the footprints are strongest in the Central Valley,
while the Bay-WGC region is second in terms of footprint
influence.

3.2. CH4 Mixing Ratios

[27] The CH4 signals measured at 91 m are compared with
WRF-STILT predictions of background CH4 signals in
Figure 7 for well-mixed periods. In general, the variability in
measured CH4 is larger in winter than the other seasons,
consistent with a recent analysis of the seasonality of max-
imum boundary layer depths [Bianco et al., 2011], which
showed that the boundary layer height reaches its maximum
in late spring months. Similarly, spring months had the
lowest value (27.83 ppb) for the background-subtracted
mean CH4 during the well-mixed periods, with summer, fall
and winter having 31.29, 51.28 and 72.65 ppb, respectively.
In addition, the minimum values reasonably approximate
predicted background CH4 at WGC, showing a smoothly
varying seasonality with a maximum centered on winter and
a minimum centered on late summer.

3.3. Bayesian Region Analysis

[28] We estimated CH4 emissions from the different
regions in Figure 3a using the SFBI model. As described in
section 2.4, the SFBI is first applied to the data selected
based on the well-mixed conditions. The first inversion was
performed at a monthly scale to avoid temporal aggregation
errors, and a total of 628 observations were used to solve for
130 unknowns. After the first optimization, posterior pre-
dicted CH4 mixing ratios from the inversion of California-
specific emissions were compared with observations and
summarized at the seasonal scale. Results using a chi-square
(fitexy) linear regression analysis [Press et al., 1992] yielded
fitting slopes (RMS error) of 0.65 � 0.05 (32 ppb), 0.69 �
0.14 (26 ppb), 0.79� 0.05 (59 ppb), and 0.81� 0.05 (66 ppb)
for spring, summer, fall, and winter, respectively. The poste-
rior fitting slopes are closer to unity, and the RMS errors are

Table 2. Estimated Model-Data Mismatch Errors and Number of Observations for Final Inversions

Jan Feb Mar Apr–Maya Jun–Jula Aug Sep Oct Nov Dec

Model-data mismatch (ppb) 42.0 42.0 21.8 21.8 15.6 15.6 22.0 22.0 22.0 42.0
Number of observations for California-specific model 36 41 60 87 67 53 60 43 44 53
Number of observations for EDGAR32 model 35 42 57 88 68 58 62 42 43 48

aData for May and July are combined with those of April and June, respectively, due to missing measurements and fire period cuts.
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reduced by 19%–22% compared to the results before optimi-
zation where RMS errors were 41, 32, 76, and 82 ppb for
spring, summer, fall, and winter, respectively and fitting slopes
were low (0.3–0.5). This result suggests that the inverse opti-
mization has improved the agreement between the measured
and predicted CH4 signals. However, even after applying the
optimized scaling factors, the slopes are still less than unity.
[29] To address the residual underestimation in the pre-

dicted CH4 signals, outlier points are removed based on a
requirement that the difference between measured and pre-
dicted mixing ratios fall within a factor a (e.g., a = 2) of the
estimated error [Bergamaschi et al., 2005]. In this study a
ranges between 1.9 and 3.2 depending on the month, and
sensitivity of emission estimates to a values is discussed in
section 3.4.
[30] The outlier removals vary with month, excluding 5–

25% (mean removal rate = 13.4%) and 0–27% (mean =
11.8%) of the data used in the first inversion for the
California-specific and EDGAR32 models, respectively. For
both cases, the fraction of data removed was consistent with
the 12–14% removal rate reported by Bergamaschi et al.
[2005]. We associate the higher fraction of removed data
with the overall low emissions in the California-specific
model and the differences in spatial distribution of CH4

emissions between the two a priori models. These outliers
may result from uncaptured errors in transport and back-
ground signals in our current modeling system. In terms of
emission maps, the likely causes of these outliers include

local sources that are not included in the inventory and lack
of information on detailed temporal and spatial variations
of emissions, in particular near the tower where footprints
are strong.
[31] After excluding outliers, the SFBI method is applied

as a second inversion, and a total of 544 observations were
used to solve for 130 unknowns. Figure 8 shows the
regression of posterior predicted on measured CH4 for the
midpoint month of each season using the California-specific
emission model. The resulting c2 values were between 0.7–
1.4 for most of the months except for November (c2 = 2.0
with fit slope = 0.98 � 0.05). Summer months showed

Figure 6. Seasonally averaged footprint maps over well-mixed periods for spring (MAM), summer
(JJA), fall (SON), and winter (DJF).

Figure 7. Time series (dates given as day/month) of mea-
sured CH4 signals (black) and predicted background (red)
CH4 signals at 91 m on the WGC tower for well-mixed per-
iods between 1 December 2007 and 30 November 2008.
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slightly lower-fitting slopes compared to the other months
due to the large model-data mismatch error. Compared with
the first inversion results, the seasonal slopes obtained from
the final inversion are also closer to unity, and the reduced
RMS errors are 19, 14, 25, and 43 ppb for spring, summer,
fall, and winter, respectively. This result demonstrates that
the two-step optimization procedure has improved the
agreement between the measured and predicted CH4 signals.
Comparing the posterior scaling factors between the first and
final inversions (Table 3), the two results are statistically
consistent, suggesting that there are few significant differ-
ences for individual regions and seasons.
[32] From Table 3, we computed annual average scaling

factors of 2.24 � 0.26, 1.57 � 0.46, and 1.17 � 0.38 for

Regions 6, 7 and 8, respectively, using the final inversion
results. This suggests that CH4 emissions from Region 6 to
the north of WGC (the southern end of the Sacramento
Valley) are significantly higher than the California-specific
model in the annual average. The seasonal variation in
scaling factor for Region 6 decreases slightly in summer
compared to spring and fall, partially diminishing the effect
of increased summer time emissions present in the a priori
model for rice agriculture. The scaling factors for Region 7
(Bay Area and surrounding urban areas) are also higher than
the California-specific a priori model but show small
increase in emissions in summer, in partial opposition to the
change in Region 6. Scaling factors for Region 8 to the south
of WGC (in the Northern San Joaquin Valley) appear

Figure 8. Comparison of CH4 mixing ratios between measurements and predictions based on the final
inverse optimization using California-specific emissions for the midpoint month of (a) spring, (b) summer,
(c) fall, and (d) winter. For summer, June and July mixing ratios are compared together due to data
removal during fire periods.

Table 3. Comparison of Posterior Scaling Factors Between First and Final (Second) Inversions for Each Season Based on the
California-Specific Emission Model

Region

Spring Summer Fall Winter

First Final First Final First Final First Final

R06 2.61 � 0.25 2.52 � 0.27 2.25 � 0.19 2.18 � 0.24 2.56 � 0.20 2.58 � 0.24 1.83 � 0.29 1.69 � 0.31
R07 2.20 � 0.45 1.60 � 0.46 2.48 � 0.42 1.91 � 0.44 2.52 � 0.45 1.53 � 0.47 1.76 � 0.48 1.23 � 0.49
R08 1.05 � 0.39 1.09 � 0.40 1.07 � 0.50 1.05 � 0.50 0.84 � 0.33 1.04 � 0.37 1.63 � 0.26 1.49 � 0.27
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approximately consistent with the California-specific model
and show little seasonal variation, though there is a modest
increase in winter.
[33] Following the above procedure, we performed similar

analyses using EDGAR emission maps. First, we calculated
predicted CH4 signals using two different EDGAR emission
models: EDGAR32 and EDGAR42 (EDGAR version 4.2)
(European Commission Joint Research Centre (JRC) and
Netherlands Environmental Assessment Agency, Emission
Database for Global Atmospheric Research (EDGAR),
release version 4.2, 2011, http://edgar.jrc.ec.europa.eu).
Compared to EDGAR32, EDGAR42 provides emission
maps at a much higher resolution (0.1� � 0.1�) than
EDGAR32, but the same resolution as that of the California-
specific model. The fitting slopes based on EDGAR42 (0.44–
0.57) were consistently lower than those of EDGAR32
(0.57–0.64) for all seasons. The RMS errors for EDGAR42
(30–77 ppb) were also higher than those of EDGAR32 (25–
72 ppb) for all seasons. This result is due to the fact that the
emission sum for Regions 6, 7 and 8 from the EDGAR42
emission maps is lower than that of EDGAR32 by a factor of
0.77. Compared to EDGAR32, EDGAR42 shows little
change in the spatial distribution of CH4 emissions and yields
emission sums of 2.62, 5.73, and 3.16 Tg CO2eq yr�1 for

Regions 6, 7 and 8, respectively. Compared to the California-
specific model, the emission sum for Region 7 from
EDGAR42 is still significantly higher by a factor of 4.48
while the emission sum for Region 8 is lower by a factor of
0.61 (see Table 1). Therefore, in this study we proceed with
Bayesian inverse analyses only using EDGAR32 although
our future study may reveal more information of the spatial
distribution of CH4 emissions using a priori emission models
at different spatial scales and distributions.
[34] Figure 9 shows the comparison of posterior predicted

and measured CH4 signals from the final inversion (543
observations) using the EDGAR32 emission model for the
midpoint month of each season. The resulting slopes and
RMS errors are comparable to the inverse results with the
California-specific model. This result suggests that the
EDGAR32 model, used in combination with the measure-
ments from this single tower, provides an equally good
description of CH4 emissions, despite the fact that the spatial
resolution (�100 km) is much coarser than that of the
California-specific emission map (�10 km). This result also
suggests that a combination of the footprints spatial structure
and errors in transport and background data do not allow us
to distinguish emission estimates from the high-resolution
emission maps from those of the low-resolution maps when

Figure 9. Comparison of CH4 mixing ratios between measurements and predictions based on the final
inverse optimization using EDGAR32 emissions for the midpoint month of (a) spring, (b) summer, (c) fall,
and (d) winter. For summer, June and July mixing ratios are compared together due to data removal during
fire periods.
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the emission model with a higher spatial resolution does not
influence the inversion result significantly.
[35] Inferred CH4 emissions are reported by region and as

a regional sum over the region (6, 7, and 8) near the tower in
Figure 10. Emission sums for the region from the California-
specific emission model based on the 50% uncertainty
assumption in the prior are 11.78 � 2.11, 19.25 � 2.97,
14.12 � 2.12, and 11.33 � 1.54 Tg CO2eq yr�1 (assum-
ing a GWP of 21 g CO2eq/g CH4) for spring, summer,
fall, and winter, respectively. However, the EDGAR32
model shows different seasonal emission sums for the
region: 16.10 � 2.24, 13.38 � 2.04, 19.71 � 2.30, and
17.98 � 3.13 Tg CO2eq yr�1. In particular, the emission
sum for winter shows the largest difference. It appears that
this discrepancy during winter is due to the difference in the
emission distribution between the two prior models. The
EDGAR32 model estimates more emissions in Region 7
while the California-specific model shows more emissions
in Region 8 during winter. In Region 6, the EDGAR32
model shows seasonal variation with posterior scaling
factors of 0.99 � 0.12, 1.50 � 0.20, 1.23 � 0.17, and
0.86 � 0.17 for spring, summer, fall, and winter, respec-
tively, but its seasonal variation is much smaller than that
of the California-specific model, which has seasonal
components driven by wetland and rice agriculture emis-
sions. For Region 7, the EDGAR32 model shows the
opposite seasonal variation to that of the California-specific
model. The inversion based on the EDGAR32 model yields
posterior scaling factors of 0.94 � 0.22, 0.62 � 0.14, 1.29 �
0.23, and 1.28 � 0.36 for spring, summer, fall, and winter,
respectively. Combined with the large emission sum for
Region 7 from EDGAR32, which is �6 times that of the
California-specific model, seasonal variation in CH4 emis-
sions based on EDGAR32 is significantly different from
that of the California-specific case. This difference between
the two models will be discussed more in terms of corre-
lations between regions. For Region 8, seasonal variation
from the EDGAR32 model is small as was the case with the
California-specific model.
[36] We then investigated the degree to which the tower

footprints allow spatial resolution of emissions between the

different subregions by considering the off-diagonal ele-
ments of the posterior error covariance matrices and a priori
emission model. In this regard, as Tarantola [1987] sug-
gested, we derive correlations from the posterior covariance
rather than a direct examination of the off-diagonal elements
of the covariance. The correlations, which vary each month
due to changing footprints, were generally negative between
Regions 6 and 7 for both California-specific (�0.1 to �0.4)
and EDGAR models (�0.2 to �0.8). The correlations
between Regions 6 and 8 were also negative for both
California-specific (�0.1 to �0.6) and EDGAR32 (�0.1
to �0.5) cases. It is worth noting that for the EDGAR32
case the anticorrelation is much stronger in Regions 6 and
7 than in Regions 6 and 8. It appears that this stronger
anticorrelation in Regions 6 and 7 occurs when the
EDGAR emission sum for Region 7, which is 2.7 times
that of Region 8, is adjusted against Region 6 via the
inversion system. This suggests that roughly 10–40% of
emissions attributed to Region 6 in the California-specific
emission model could be traded off against emissions from
Region 7 and vice versa. This result further suggests that
our inversion system has not solved the scaling factors
entirely in an independent manner and only some linear
combination of those scaling factors may be resolved.

3.4. Sensitivity Analysis

[37] A sensitivity analysis of prior uncertainty was con-
ducted to investigate its impact on CH4 emission esti-
mates. With the 50% prior uncertainty as the baseline, we
performed inversions using 70% and 90% prior uncer-
tainties in the a priori emission models. The results
showed that there is no significant change in CH4 region
sum estimates with different uncertainties in either the
California-specific or EDGAR model. For the California-
specific case, the region sums based on the 90% uncer-
tainty case were 12.94 � 3.18, 20.97 � 4.95, 14.94 �
3.05, and 13.70 � 2.24 Tg CO2eq yr�1 for spring, sum-
mer, fall, and winter, respectively, which are not signifi-
cantly different from the 50% uncertainty case: 11.78 �
2.11, 19.25 � 2.97, 14.12 � 2.12, and 11.33 � 1.54 Tg
CO2eq yr�1. Emissions from 70% uncertainty ranged

Figure 10. Comparison of posterior CH4 emissions (Tg CO2eq yr�1, assuming a 100 year global warm-
ing potential of 21) by region between the (a) California-specific and (b) EDGAR32 emission models.
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between these two results, showing no significant change
in CH4 emission estimates. The EDGAR-based inversion
also showed no significant difference in the region sum for
each season among different prior uncertainty assumptions.
[38] In addition to the prior uncertainty sensitivity anal-

ysis, we performed a sensitivity analysis on the observation
period using observational data during the afternoon hours
(12:00–17:00 local) as a subset of the original data. In this
inversion, the number of 3 hourly observations is 284 while
the number of unknowns is 130 as in the case of the orig-
inal inversion. Based on the 50% uncertainty assumption in
the a priori emission map, the final inversion using the
California-specific emission model yielded emission sums
of 12.12 � 2.47, 20.30 � 3.12, 17.55 � 2.61, and 12.83 �
1.78 Tg CO2eq yr�1 for spring, summer, fall, and winter.
Compared to those of the original inversion, we find that
there is no significant difference between the two inverse
analyses.
[39] We also conducted a sensitivity analysis on the a

value used to remove outliers for the final inversion. We
repeated the inversion using a fixed value of 2 for a instead
of using varying values depending on the c2 statistic. In this
inversion, the number of 3 hourly observations is 516, which
is slightly smaller than 544 observations used in the original
analysis. As Bergamaschi et al. [2005] indicated, the differ-
ence between the two analyses was small. The case based on
the fixed value of 2 yields emissions sums of 11.12 � 2.12,
19.49� 2.96, 14.84� 2.27, 10.93� 1.73 Tg CO2eq yr

�1 for
spring, summer, fall, and winter, respectively, which are very
similar to those of the case with varying a.
[40] Finally, 2008 included a period with significant fire

activities and the data were initially screened to remove
periods with obvious contamination from wild fires as
described in section 2.1. We also investigated the sensi-
tivity of emission estimates to the fire activities. When
observations from the summer fire periods were not
removed, the final inversion using the California-specific
emission model yielded a region sum of 19.90 � 2.96 Tg
CO2eq yr�1 for Regions 6, 7 and 8 during the summer
season, which does not deviate significantly from 19.25
� 2.97 Tg CO2eq yr�1 of the original inversion. The
inversion with the fire periods included showed 11.33 �
1.20, 2.65 � 0.57, and 5.92 � 2.65 Tg CO2eq yr�1

for Regions 6, 7 and 8, respectively. This result is also
comparable to 11.20 � 1.21, 2.48 � 0.57, and 5.57 � 2.65
Tg CO2eq yr�1 from the original analysis.

4. Discussion

[41] The regionally summed annual posterior CH4 emis-
sions are 14.12 � 2.19 and 16.79 � 2.43 Tg CO2eq for the
California-specific and EDGAR32 models, larger than the
sum of the California-specific prior (9.13 Tg CO2eq) by
factors of 1.55 � 0.24 and 1.84 � 0.27, respectively. The
similarity of these two factors suggests that inferred emis-
sions for the area within approximately 150 km of the tower
are independent of the two emission models and that actual
summed CH4 emissions are significantly higher than the
sum inferred from the California ARB inventory. In terms of
the spatial distribution of CH4 emissions, these results indi-
cate that the inversion system constrains emissions some-
what independent of the resolution of the emission map.

Assuming these average posterior scaling factors were
applicable to all regions of California, the resulting total CH4

emissions would comprise approximately 9% of total GHG
emissions, a result that requires further investigation and
confirmation (California ARB, online report, 2010).
[42] The California-specific a priori model shows clear

seasonal variations in total CH4 emissions, producing sig-
nificantly greater total emissions in summer, moderate
emissions in fall, and lower emissions in winter and spring.
The higher summer time emissions are concentrated in
Region 6, a result that is consistent with the spatial distri-
bution and seasonality of the a priori emissions from rice
agriculture [Salas et al., 2006]. This provides consistent
evidence for increased emissions in summer as expected in
biological systems responding to warmer temperatures such
as rice and wetlands [Potter et al., 2006; McMillan et al.,
2007]. On the contrary, posterior emissions obtained with
the EDGAR model yield only weak seasonality in total CH4

emissions for the three regions although the fall and winter
emissions are marginally different from those of the other
seasons. In particular, the high winter emissions from the
EDGAR model are likely due to a combination of urban
emissions in the a priori model (i.e., �six times larger than
that of the California-specific model), its coarse spatial res-
olution, and weak footprints in the urban region during
winter. It is conceivable that emissions from Region 7 might
increase in winter due to urban emission sources such as
increased natural gas use. However, it seems unlikely that
natural gas emissions from Region 7 could drive the seven-
fold increase in posterior emissions (10.47 � 2.95 Tg CO2eq
yr�1) compared to that (1.56 � 0.62 Tg CO2eq yr�1) of the
California-specific model, considering that natural gas
accounts for only less than 30% of the total emission in
Region 7. A further study is required to resolve this dis-
crepancy, possibly using more measurements from multiple
stations combined with additional improvements in a priori
emission models.
[43] As described above, it appears that the different

emissions models combined with the time varying footprints
produce posterior emission sums that (1) peak in different
regions and seasons and (2) contain anticorrelations among
regions which limit unique spatial attribution of emissions.
This type of anticorrelation in posterior emission estimates
for different regions has been reported in the inversion
results of Bergamaschi et al. [2005], and suggests that a
network of measurement stations will be required to accu-
rately resolve the spatial distributions of CH4 emissions over
the state of California [Fischer et al., 2009].
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